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What is Artificial Intelligence?
Artificial Intelligence (AI) is a branch of computer 
science dealing with the simulation of intelligent 
behavior in computers. 
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Artificial Intelligence History
● AI history dates back to ancient times
● In 1950s AI began to take shape -  researchers 

began to use computers to try and simulate human 
intelligence

● AI program by mathematician Alan Turing
● Expert system by Edward Feigenbaum in the 1970s 

and the emergence of neural networks in the 1980s
● Today, AI is used to automate processes, improve 

efficiency, and solve complex problems
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AI in Natural Language Processing
● Natural language processing (NLP)  is 

a subfield of AI that focuses on 
enabling machines to understand and 
generate human language

● Machine learning (ML) involves 
training algorithms to learn patterns 
in data

● Deep learning (DL) is a type of 
machine learning that uses neural 
networks

AI

ML

DL
NLP
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Generative Pre-trained Transformer(GPT)
● Network models that uses the transformer architecture 
● A type of LLM (Large Language Model)
● Pre-trained refers to the model being trained on a large corpus of data
● An application is ChatGPT developed by OpenAI
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Transformers
● A transformer is a deep learning model architecture used for processing data
● The transformer architecture is based on the idea of self-attention
● Introduced in a research paper titled "Attention Is All You Need" in 2017
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Embeddings
● A mathematical representations of words, sentences, or documents in a 

continuous vector space
● Encode similar words with similar embeddings
● Embeddings have become a fundamental component of many NLP tasks
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Question: Do you use or intend to use AI as an assistant for 
content generation?

 Yes. I use AI
 Yes. I intend to use AI
 No. I do not use AI
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OpenAI
OpenAI is an open-source research organization that works to advance artificial 
intelligence (AI) 
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OpenAI Application
OpenAI has trained language models that are very good at understanding and 
generating text

● Text Summarization
● Natural Language Processing
● Text Generation
● Machine Translation
● Text Classification
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What is Schematron?
A language for making assertions in documents
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Schematron and AI
Automatically verify documents using an AI model 

Examples of verification with AI:
– Is active/passive voice used in the description?
– Is this written according to the style guide?
– Does the topic answers to this <question>?
– Is spelling and grammar correct?
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Schematron Quick Fix (SQF)
● SQF is an extension of the ISO Schematron
● User-defined fixes for Schematron assert/report
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SQF and AI 
● Correct problems in documents using AI
● Examples:

– Rephrase to use active voice
– Rephrase to have 20 words
– Rephrase paragraph to answer to the following question
– Correct spelling and grammar
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Implementation of AI in Schematron 
● Using XSLT functions

 

● Using extension functions
– xs:string ai:transform-content(xs:string instruction, xs:string content)
– xs:boolean ai:verify-content(xs:string instruction, xs:string content)

<xsl:function name="ai:chatGPT">
        <xsl:param name="userInput"/>
        <xsl:variable name="url" select="'https://api.chatgpt.com/v1/chatbot/question'"/>
        <xsl:variable name="requestBody" select="concat('{', '&quot;text&quot;:&quot;',
$userInput,'&quot;', '}')"/>
        <xsl:variable name="response" select="document(concat($url, '?apiKey=', 
'&lt;your_api_key>'))//response"/>
        <xsl:sequence select="$response"/>

…..
</xsl:function>
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Functions Built-in Prompt
● A prompt represents instructions and context given to a language model to 

perform a task 
● Functions can provide a specific built-in prompt 

– ai:verify-content(instruction, content)
“You are a technical writer and you need to verify the following and respond with 
true or false:“ + Is active voice used in the description? + content

– ai:transform-content(instruction, content)
“You are a developer and you need perform the following task:“ + Rephrase 
to use active voice + content

https://github.com/f/awesome-chatgpt-prompts

https://github.com/f/awesome-chatgpt-prompts
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Oxygen AI Positron Assistant Add-on
● Uses the Oxygen AI Positron service, built on top of OpenAI GPT
● Provides built-in extension functions and actions
● The service is free to use for up to 250 requests per user/month
● Compatible with Oxygen XML Editor / Author / Developer v25.0+

https://blog.oxygenxml.com/topics/ai_positron.html

https://blog.oxygenxml.com/topics/ai_positron.html
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Question: Do you use OpenAI/ChatGPT or other AI services?

 Yes. I use OpenAI/ChatGPT
 Yes. I use other AI services
 No. I do not use AI
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Examples of Schematron Rules



  

AI in Schematron and SQFAI in Schematron and SQF

Check if the text is consistent
● Example of a rule that checks if the text is easy to read and understand

The text in not easy to read and understand
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Check if the text is consistent
● Rule that verifies if the text is easy to read and understand

<sch:rule context="p">
    <sch:assert test="ai:verify-content('Is the text easy to read and understand?', .)">
        The text in not easy to read and understand</sch:assert>
</sch:rule>
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Correct text consistency
● Example fix that makes the text easy to read and understand

Correct the consistency of the text
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Correct the text consistency
● SQF fix that corrects the text to be easy to read and understand

<sqf:fix id="rephrase">
    <sqf:description>
        <sqf:title>Correct the consistency of the text</sqf:title>
    </sqf:description>
    <sqf:replace match="text()" select="ai:transform-content(

'Correct the text to be easy to read and understand', .)"/>
</sqf:fix>
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Check the text voice
● Example of a rule that checks if the text uses active voice

In the description we should use active voice
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Check the text voice
● Rule that verifies if the text voice is active

<sch:rule context="shortdesc">
    <sch:assert test="ai:verify-content('Is active voice used?', .)">
        In the description we should use active voice.</sch:assert>
</sch:rule>
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Correct the text voice
● Example fix that reformulates the text to use active voice

Reformulate the text to use active voice
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Correct the text voice
● SQF fix that that reformulates the text to use active voice

<sqf:fix id="rephrase">
    <sqf:description>
        <sqf:title>Reformulate the text to use active voice</sqf:title>
    </sqf:description>
    <sqf:replace match="text()" select="ai:transform-content('

Reformulate to use active voice', .)"/>
</sqf:fix>
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Answer to question
● Example of a rule that checks if the text answers a specified question 

The test does not answer to the question "What is OpenAI?"
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Check the question
● Rule that verifies if the text does answer a specific question

<sch:rule context="p[@id='openai']">
    <sch:assert test="ai:verify-content('Does it answers to the question: What is OpenAI?', .)">
        The test does not answer to the question "What is OpenAPI?" </sch:assert>
</sch:rule>
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Reformulate text 
● Example fix that reformulates the text to answer a specific question

Reformulate the text to answer to the question: 
                        What is OpenAI?
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Reformulate text 
● SQF fix that that reformulates the text to answer the 

question “What is OpenAI?”

<sqf:fix id="rephrase">
    <sqf:description>
        <sqf:title>Reformulate the text to answer to the question: 
                        What is OpenAI?</sqf:title>
    </sqf:description>
    <sqf:replace match="text()" select="ai:transform-content(
        'Reformulate the text to answer to the question: What is OpenAI?', .)"/>
</sqf:fix>
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AI and Schematron 
● Advantages of using AI with Schematron 

– Verify your documents using AI power
– Define the instructions to be sent to the AI engine
– Control the content to be verified
– Control the content that is sent
– Automation of the process

● Challenges
– High cost for validation as you type or multiple validations
– The response from the AI server in not instant
– Responses can sometimes be inaccurate
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AI and Schematron Quick Fixes
● Advantages of using AI with SQF 

– Use the power of AI to correct the content
– Control the content that is sent
– Control the content to be modified
– Automation of the process

● Challenges
– The response from the AI server is not instant
– Responses can sometimes be inaccurate
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AI and Schematron Quick Fixes
● Use AI just to correct the problems

– Reduce the cost
– You can use the validation as you type
– The user decides when to call the AI
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Check the number of words
● Example of a rule that checks the number of words from  the description 

The description must contain less than 50 words.
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Check the number of words
● Rule that verifies the number of words from the shortdesc element

<sch:rule context="shortdesc">
    <sch:report test="count(tokenize(.,'\s+')) > 50">
         The description must contain less than 50 words.</sch:report>
</sch:rule>
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Correct text to contain less words
● Example fix that reformulates the phrase to contains less than 50 words

Reformulate phrase to contain less than 50 words
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Correct text to contain less words
● SQF fix that reformulates the phrase to have less than 50 words

<sqf:fix id="rephrase">
    <sqf:description>
        <sqf:title>Reformulate phrase to contain less than 50 words</sqf:title>
    </sqf:description>
    <sqf:replace match="text()" select="ai:transform-content(
           'Reformulate phrase to contain less than 50 words', .)"/>
</sqf:fix>
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Check if text should be a list
● Example of a rule that checks it the text should be converted to a list

The text should be converted to a list.

    <body>
        <p> - Is active/passive voice used in the description? 
            - Is this written according to the styleguide? 
            - Does the to pic answers to this "question"? 
            - Is spelling and grammar correct?</p>
    </body>
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Check if text should be a list
● Rule that verifies the text from a paragraph should be converted to a list

<sch:rule context="p">
    <sch:report test="contains(., '- ')">
        The text should be converted to a list</sch:report>
</sch:rule>
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Create a list from phrases
● Example of fix that generates an unordered list from a set of phrases 

Create a list from the phrases from the paragraph

        <p> - Is active/passive voice used in the description? 
            - Is this written according to the styleguide? 
            - Does the to pic answers to this "question"? 
            - Is spelling and grammar correct?</p>

        <ul>
            <li>Active/passive voice used?</li>
            <li>Written according to styleguide?</li>
            <li>Topic answers question?</li>
            <li>Spelling and grammar correct?</li>
        </ul>
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Create a list from phrases
● SQF fix that creates a list from a set of phrases

<sqf:fix id="replace">
    <sqf:description>
        <sqf:title>Create a list from the phrases from the paragraph</sqf:title>
    </sqf:description>
    <sqf:replace match="text()">
        <xsl:value-of select="ai:transform-content(
            'Create a Dita unorderd list with an item from each phrase', .)"
            disable-output-escaping="yes"/>
    </sqf:replace>
</sqf:fix>
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User Entry
The instruction to correct the problem is 
specified by the user
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Check technical terms
● Example of a rule that checks if the technical terms are not explained 

adequately

The text uses WIFI term that is not explained adequately
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Specify how to reformulate the phrase

Correct terms
● Example fix that allows the user to specify how to reformulate the phrase
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Correct terms 
● SQF fix that allows the user to specify the prompt that will be sent to the AI

<sqf:fix id="reformulateUser">
    <sqf:description>
        <sqf:title>Specify how to reformulate the phrase</sqf:title>
    </sqf:description>
    <sqf:user-entry name="userInput" default="'
         Reformulate phrase and replace the ambiguous terms with a more accurate one'">
        <sqf:description><sqf:title>How to correct:</sqf:title>sqf:description>
    </sqf:user-entry>
    <sqf:replace match="text()" select="ai:transform-content($userInput, .)"/>
</sqf:fix>
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AI Extension Functions
● The extension functions ai:transform-content(instruction, content) and 

ai:verify-content(instruction, content) can be used for:
– Validation with Schematron
– Quick-fix execution
– XML refactor action
– Custom framework action 
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Generate AI Fix
● Generate the fix from the Schematron message
● Uses the Schematron rule context as the content to correct

– System prompt: Act as a developer. Perform the following task:               
The description must contain less than 50 words

– User prompt: The content from the “shortdesc” element 
– Operation: Replace the text from “shortdesc” with the one from AI

<sch:rule context="shortdesc">
    <sch:report test="count(tokenize(.,'\s+')) > 50">
         The description must contain less than 50 words.</sch:report>
</sch:rule>

Generate AI Fix
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Automatic Fix
● Advantages:

– No need to create fixes in Schematron
– A fix is generated automatically from each Schematron message
– Fixes can also be generated for other error messages

● Challenges
– The message need to be as concise as possible so that the AI can use
– Sometimes you need to change the context for the fix or perform different 

operations
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Use AI for Development
● Use AI in the development process, for example to create Schematron, XSLT, 

XSD, or JSON Schema documents
● Use AI Positron Assistant “Follow Instruction” action to generate content
● Generate documentation for Schematron, XSD, XSLT 
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Create Schematron using AI
● An assert that verifies the number of words to be 10

● An assert that verifies if there is an email in text

<sch:assert test="count(tokenize(., '\s+')) = 10">There should be exactly 10.</sch:assert>

<sch:assert test="matches(., '\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')">
                There is no email in the text</sch:assert>

AI

AI
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Generate Schematron documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the Schematron element

<sch:rule context="sch:rule | sch:assert">
    <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
        The <sch:name/> does not have a documentation </sch:assert>
</sch:rule>

<sqf:add position="before">
    <xsl:comment select="ai:transform-content(
        'Act as a Schematron developer. Describe the following Schematron code.', 
        fn:serialize(.))"/>    
</sqf:add>
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Create XSLT using AI
● A function that gets a string and length and returns a substring, breaking at 

word boundary

<xsl:function name="my:substring-at-word-boundary">
    <xsl:param name="string" as="xs:string"/>
    <xsl:param name="length" as="xs:integer"/>
    <xsl:variable name="substring" select="substring($string, 1, $length)"/>
    <xsl:choose>
        <xsl:when test="contains(substring($string, $length + 1), ' ')">
            <xsl:value-of select="$substring"/>
            <xsl:text> </xsl:text>
            <xsl:sequence
                select="my:substring-at-word-boundary(substring-after($string, ' '), $length)"/>
        </xsl:when>
        <xsl:otherwise>
            <xsl:value-of select="$substring"/>
        </xsl:otherwise>
    </xsl:choose>
</xsl:function>

AI
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Generate XSLT documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the XSLT element

<sch:rule context="xsl:template | xsl:function">
    <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
        The <sch:name/> does not have a documentation</sch:assert>
</sch:rule>

<sqf:add position="before">
    <xsl:comment select="ai:transform-content(
        'Act as an XSLT developer. Describe the following XSLT code.', 
        fn:serialize(.))"/>    
</sqf:add>
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Create XSD using AI
● A complex type that defines a tournament

<xsd:complexType name="Tournament">
<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Location" type="xsd:string"/>
<xsd:element name="StartDate" type="xsd:date"/>
<xsd:element name="EndDate" type="xsd:date"/>
<xsd:element name="PrizeMoney" type="xsd:decimal"/>
<xsd:element name="Winner" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

AI
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Generate XSD documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the XSD element

<sch:rule context="xsd:element | xsd:complexType">
    <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
        The <sch:name/> does not have a documentation</sch:assert>
</sch:rule>

<sqf:add position="before">
    <xsl:comment select="ai:transform-content(
        'Act as an XSD developer. Describe the following XSD code.', 
        fn:serialize(.))"/>    
</sqf:add>
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Create JSON Schema using AI
● A type that defines a purchase order

{
    "type": "object",
    "properties": {
        "orderNumber": {"type": "integer"},
        "customerName": {"type": "string"},
        "items": {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "productId": {"type": "integer"},
                    "quantity": {"type": "integer"},
                    "price": {"type": "number"}
                }
    }
...

AI



  

AI in Schematron and SQFAI in Schematron and SQF

Conclusion
● Schematron can use the power of AI to verify content
● Correct content using SQF and AI
● Generate fixes automatically using AI
● Develop Schematron, XSLT, XSD, or JSON Schema with AI
● AI constantly improving and growing
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Future Plans
● Add support in Web Author
● Implement new extension functions
● Add cache for GPT requests
● Improve AI support for development 
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Question: What features are the most important for you?
 Add support in Web Author
 Implement new extension functions
 Add cache for GPT requests
 Improve AI support for development
 Other (feedback is welcome)
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Resources
● https://openai.com/
● https://platform.openai.com/docs/guides/chat
● http://schematron.com/
● http://schematron-quickfix.github.io/sqf

https://openai.com/
https://platform.openai.com/docs/guides/chat
http://schematron.com/
http://schematron-quickfix.github.io/sqf


Questions?

Octavian Nadolu
Project Manager at Syncro Soft

octavian.nadolu@oxygenxml.com
Twitter: @OctavianNadolu

LinkedIn: octaviannadolu
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