
AI and Schematron
for Content
Verification
and Correction

© 2023 Syncro Soft SRL. All rights reserved

Octavian Nadolu, Syncro Soft
octavian_nadolu@oxygenxml.com
@OctavianNadolu

mailto:octavian_nadolu@oxygenxml.com

AI in Schematron and SQFAI in Schematron and SQF

Agenda
● Artificial Intelligence (AI)
● OpenAI/Generative Pre-trained Transformer
● Schematron and Schematron Quick Fixes (SQF)
● Implementing AI in Schematron and SQF
● Examples of AI-driven Schematron and SQF

Solutions
● Benefits of Using AI in Schematron and SQF
● AI in Development

AI in Schematron and SQFAI in Schematron and SQF

What is Artificial Intelligence?
Artificial Intelligence (AI) is a branch of computer
science dealing with the simulation of intelligent
behavior in computers.

AI in Schematron and SQFAI in Schematron and SQF

Artificial Intelligence History
● AI history dates back to ancient times
● In 1950s AI began to take shape - researchers

began to use computers to try and simulate human
intelligence

● AI program by mathematician Alan Turing
● Expert system by Edward Feigenbaum in the 1970s

and the emergence of neural networks in the 1980s
● Today, AI is used to automate processes, improve

efficiency, and solve complex problems

AI in Schematron and SQFAI in Schematron and SQF

AI in Natural Language Processing
● Natural language processing (NLP) is

a subfield of AI that focuses on
enabling machines to understand and
generate human language

● Machine learning (ML) involves
training algorithms to learn patterns
in data

● Deep learning (DL) is a type of
machine learning that uses neural
networks

AI

ML

DL
NLP

AI in Schematron and SQFAI in Schematron and SQF

Generative Pre-trained Transformer(GPT)
● Network models that uses the transformer architecture
● A type of LLM (Large Language Model)
● Pre-trained refers to the model being trained on a large corpus of data
● An application is ChatGPT developed by OpenAI

AI in Schematron and SQFAI in Schematron and SQF

Transformers
● A transformer is a deep learning model architecture used for processing data
● The transformer architecture is based on the idea of self-attention
● Introduced in a research paper titled "Attention Is All You Need" in 2017

AI in Schematron and SQFAI in Schematron and SQF

Embeddings
● A mathematical representations of words, sentences, or documents in a

continuous vector space
● Encode similar words with similar embeddings
● Embeddings have become a fundamental component of many NLP tasks

AI in Schematron and SQFAI in Schematron and SQF

Question: Do you use or intend to use AI as an assistant for
content generation?

 Yes. I use AI
 Yes. I intend to use AI
 No. I do not use AI

AI in Schematron and SQFAI in Schematron and SQF

OpenAI
OpenAI is an open-source research organization that works to advance artificial
intelligence (AI)

AI in Schematron and SQFAI in Schematron and SQF

OpenAI Application
OpenAI has trained language models that are very good at understanding and
generating text

● Text Summarization
● Natural Language Processing
● Text Generation
● Machine Translation
● Text Classification

AI in Schematron and SQFAI in Schematron and SQF

What is Schematron?
A language for making assertions in documents

AI in Schematron and SQFAI in Schematron and SQF

Schematron and AI
Automatically verify documents using an AI model

Examples of verification with AI:
– Is active/passive voice used in the description?
– Is this written according to the style guide?
– Does the topic answers to this <question>?
– Is spelling and grammar correct?

AI in Schematron and SQFAI in Schematron and SQF

Schematron Quick Fix (SQF)
● SQF is an extension of the ISO Schematron
● User-defined fixes for Schematron assert/report

AI in Schematron and SQFAI in Schematron and SQF

SQF and AI
● Correct problems in documents using AI
● Examples:

– Rephrase to use active voice
– Rephrase to have 20 words
– Rephrase paragraph to answer to the following question
– Correct spelling and grammar

AI in Schematron and SQFAI in Schematron and SQF

Implementation of AI in Schematron
● Using XSLT functions

● Using extension functions
– xs:string ai:transform-content(xs:string instruction, xs:string content)
– xs:boolean ai:verify-content(xs:string instruction, xs:string content)

<xsl:function name="ai:chatGPT">
 <xsl:param name="userInput"/>
 <xsl:variable name="url" select="'https://api.chatgpt.com/v1/chatbot/question'"/>
 <xsl:variable name="requestBody" select="concat('{', '"text":"',
$userInput,'"', '}')"/>
 <xsl:variable name="response" select="document(concat($url, '?apiKey=',
'<your_api_key>'))//response"/>
 <xsl:sequence select="$response"/>

…..
</xsl:function>

AI in Schematron and SQFAI in Schematron and SQF

Functions Built-in Prompt
● A prompt represents instructions and context given to a language model to

perform a task
● Functions can provide a specific built-in prompt

– ai:verify-content(instruction, content)
“You are a technical writer and you need to verify the following and respond with
true or false:“ + Is active voice used in the description? + content

– ai:transform-content(instruction, content)
“You are a developer and you need perform the following task:“ + Rephrase
to use active voice + content

https://github.com/f/awesome-chatgpt-prompts

https://github.com/f/awesome-chatgpt-prompts

AI in Schematron and SQFAI in Schematron and SQF

Oxygen AI Positron Assistant Add-on
● Uses the Oxygen AI Positron service, built on top of OpenAI GPT
● Provides built-in extension functions and actions
● The service is free to use for up to 250 requests per user/month
● Compatible with Oxygen XML Editor / Author / Developer v25.0+

https://blog.oxygenxml.com/topics/ai_positron.html

https://blog.oxygenxml.com/topics/ai_positron.html

AI in Schematron and SQFAI in Schematron and SQF

Question: Do you use OpenAI/ChatGPT or other AI services?

 Yes. I use OpenAI/ChatGPT
 Yes. I use other AI services
 No. I do not use AI

AI in Schematron and SQFAI in Schematron and SQF

Examples of Schematron Rules

AI in Schematron and SQFAI in Schematron and SQF

Check if the text is consistent
● Example of a rule that checks if the text is easy to read and understand

The text in not easy to read and understand

AI in Schematron and SQFAI in Schematron and SQF

Check if the text is consistent
● Rule that verifies if the text is easy to read and understand

<sch:rule context="p">
 <sch:assert test="ai:verify-content('Is the text easy to read and understand?', .)">
 The text in not easy to read and understand</sch:assert>
</sch:rule>

AI in Schematron and SQFAI in Schematron and SQF

Correct text consistency
● Example fix that makes the text easy to read and understand

Correct the consistency of the text

AI in Schematron and SQFAI in Schematron and SQF

Correct the text consistency
● SQF fix that corrects the text to be easy to read and understand

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Correct the consistency of the text</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content(

'Correct the text to be easy to read and understand', .)"/>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

Check the text voice
● Example of a rule that checks if the text uses active voice

In the description we should use active voice

AI in Schematron and SQFAI in Schematron and SQF

Check the text voice
● Rule that verifies if the text voice is active

<sch:rule context="shortdesc">
 <sch:assert test="ai:verify-content('Is active voice used?', .)">
 In the description we should use active voice.</sch:assert>
</sch:rule>

AI in Schematron and SQFAI in Schematron and SQF

Correct the text voice
● Example fix that reformulates the text to use active voice

Reformulate the text to use active voice

AI in Schematron and SQFAI in Schematron and SQF

Correct the text voice
● SQF fix that that reformulates the text to use active voice

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Reformulate the text to use active voice</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content('

Reformulate to use active voice', .)"/>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

Answer to question
● Example of a rule that checks if the text answers a specified question

The test does not answer to the question "What is OpenAI?"

AI in Schematron and SQFAI in Schematron and SQF

Check the question
● Rule that verifies if the text does answer a specific question

<sch:rule context="p[@id='openai']">
 <sch:assert test="ai:verify-content('Does it answers to the question: What is OpenAI?', .)">
 The test does not answer to the question "What is OpenAPI?" </sch:assert>
</sch:rule>

AI in Schematron and SQFAI in Schematron and SQF

Reformulate text
● Example fix that reformulates the text to answer a specific question

Reformulate the text to answer to the question:
 What is OpenAI?

AI in Schematron and SQFAI in Schematron and SQF

Reformulate text
● SQF fix that that reformulates the text to answer the

question “What is OpenAI?”

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Reformulate the text to answer to the question:
 What is OpenAI?</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content(
 'Reformulate the text to answer to the question: What is OpenAI?', .)"/>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

AI and Schematron
● Advantages of using AI with Schematron

– Verify your documents using AI power
– Define the instructions to be sent to the AI engine
– Control the content to be verified
– Control the content that is sent
– Automation of the process

● Challenges
– High cost for validation as you type or multiple validations
– The response from the AI server in not instant
– Responses can sometimes be inaccurate

AI in Schematron and SQFAI in Schematron and SQF

AI and Schematron Quick Fixes
● Advantages of using AI with SQF

– Use the power of AI to correct the content
– Control the content that is sent
– Control the content to be modified
– Automation of the process

● Challenges
– The response from the AI server is not instant
– Responses can sometimes be inaccurate

AI in Schematron and SQFAI in Schematron and SQF

AI and Schematron Quick Fixes
● Use AI just to correct the problems

– Reduce the cost
– You can use the validation as you type
– The user decides when to call the AI

AI in Schematron and SQFAI in Schematron and SQF

Check the number of words
● Example of a rule that checks the number of words from the description

The description must contain less than 50 words.

AI in Schematron and SQFAI in Schematron and SQF

Check the number of words
● Rule that verifies the number of words from the shortdesc element

<sch:rule context="shortdesc">
 <sch:report test="count(tokenize(.,'\s+')) > 50">
 The description must contain less than 50 words.</sch:report>
</sch:rule>

AI in Schematron and SQFAI in Schematron and SQF

Correct text to contain less words
● Example fix that reformulates the phrase to contains less than 50 words

Reformulate phrase to contain less than 50 words

AI in Schematron and SQFAI in Schematron and SQF

Correct text to contain less words
● SQF fix that reformulates the phrase to have less than 50 words

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Reformulate phrase to contain less than 50 words</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content(
 'Reformulate phrase to contain less than 50 words', .)"/>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

Check if text should be a list
● Example of a rule that checks it the text should be converted to a list

The text should be converted to a list.

 <body>
 <p> - Is active/passive voice used in the description?
 - Is this written according to the styleguide?
 - Does the to pic answers to this "question"?
 - Is spelling and grammar correct?</p>
 </body>

AI in Schematron and SQFAI in Schematron and SQF

Check if text should be a list
● Rule that verifies the text from a paragraph should be converted to a list

<sch:rule context="p">
 <sch:report test="contains(., '- ')">
 The text should be converted to a list</sch:report>
</sch:rule>

AI in Schematron and SQFAI in Schematron and SQF

Create a list from phrases
● Example of fix that generates an unordered list from a set of phrases

Create a list from the phrases from the paragraph

 <p> - Is active/passive voice used in the description?
 - Is this written according to the styleguide?
 - Does the to pic answers to this "question"?
 - Is spelling and grammar correct?</p>

 Active/passive voice used?
 Written according to styleguide?
 Topic answers question?
 Spelling and grammar correct?

AI in Schematron and SQFAI in Schematron and SQF

Create a list from phrases
● SQF fix that creates a list from a set of phrases

<sqf:fix id="replace">
 <sqf:description>
 <sqf:title>Create a list from the phrases from the paragraph</sqf:title>
 </sqf:description>
 <sqf:replace match="text()">
 <xsl:value-of select="ai:transform-content(
 'Create a Dita unorderd list with an item from each phrase', .)"
 disable-output-escaping="yes"/>
 </sqf:replace>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

User Entry
The instruction to correct the problem is
specified by the user

AI in Schematron and SQFAI in Schematron and SQF

Check technical terms
● Example of a rule that checks if the technical terms are not explained

adequately

The text uses WIFI term that is not explained adequately

AI in Schematron and SQFAI in Schematron and SQF

Specify how to reformulate the phrase

Correct terms
● Example fix that allows the user to specify how to reformulate the phrase

AI in Schematron and SQFAI in Schematron and SQF

Correct terms
● SQF fix that allows the user to specify the prompt that will be sent to the AI

<sqf:fix id="reformulateUser">
 <sqf:description>
 <sqf:title>Specify how to reformulate the phrase</sqf:title>
 </sqf:description>
 <sqf:user-entry name="userInput" default="'
 Reformulate phrase and replace the ambiguous terms with a more accurate one'">
 <sqf:description><sqf:title>How to correct:</sqf:title>sqf:description>
 </sqf:user-entry>
 <sqf:replace match="text()" select="ai:transform-content($userInput, .)"/>
</sqf:fix>

AI in Schematron and SQFAI in Schematron and SQF

AI Extension Functions
● The extension functions ai:transform-content(instruction, content) and

ai:verify-content(instruction, content) can be used for:
– Validation with Schematron
– Quick-fix execution
– XML refactor action
– Custom framework action

AI in Schematron and SQFAI in Schematron and SQF

Generate AI Fix
● Generate the fix from the Schematron message
● Uses the Schematron rule context as the content to correct

– System prompt: Act as a developer. Perform the following task:
The description must contain less than 50 words

– User prompt: The content from the “shortdesc” element
– Operation: Replace the text from “shortdesc” with the one from AI

<sch:rule context="shortdesc">
 <sch:report test="count(tokenize(.,'\s+')) > 50">
 The description must contain less than 50 words.</sch:report>
</sch:rule>

Generate AI Fix

AI in Schematron and SQFAI in Schematron and SQF

Automatic Fix
● Advantages:

– No need to create fixes in Schematron
– A fix is generated automatically from each Schematron message
– Fixes can also be generated for other error messages

● Challenges
– The message need to be as concise as possible so that the AI can use
– Sometimes you need to change the context for the fix or perform different

operations

AI in Schematron and SQFAI in Schematron and SQF

Use AI for Development
● Use AI in the development process, for example to create Schematron, XSLT,

XSD, or JSON Schema documents
● Use AI Positron Assistant “Follow Instruction” action to generate content
● Generate documentation for Schematron, XSD, XSLT

AI in Schematron and SQFAI in Schematron and SQF

Create Schematron using AI
● An assert that verifies the number of words to be 10

● An assert that verifies if there is an email in text

<sch:assert test="count(tokenize(., '\s+')) = 10">There should be exactly 10.</sch:assert>

<sch:assert test="matches(., '\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')">
 There is no email in the text</sch:assert>

AI

AI

AI in Schematron and SQFAI in Schematron and SQF

Generate Schematron documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the Schematron element

<sch:rule context="sch:rule | sch:assert">
 <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
 The <sch:name/> does not have a documentation </sch:assert>
</sch:rule>

<sqf:add position="before">
 <xsl:comment select="ai:transform-content(
 'Act as a Schematron developer. Describe the following Schematron code.',
 fn:serialize(.))"/>
</sqf:add>

AI in Schematron and SQFAI in Schematron and SQF

Create XSLT using AI
● A function that gets a string and length and returns a substring, breaking at

word boundary

<xsl:function name="my:substring-at-word-boundary">
 <xsl:param name="string" as="xs:string"/>
 <xsl:param name="length" as="xs:integer"/>
 <xsl:variable name="substring" select="substring($string, 1, $length)"/>
 <xsl:choose>
 <xsl:when test="contains(substring($string, $length + 1), ' ')">
 <xsl:value-of select="$substring"/>
 <xsl:text> </xsl:text>
 <xsl:sequence
 select="my:substring-at-word-boundary(substring-after($string, ' '), $length)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$substring"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

AI

AI in Schematron and SQFAI in Schematron and SQF

Generate XSLT documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the XSLT element

<sch:rule context="xsl:template | xsl:function">
 <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
 The <sch:name/> does not have a documentation</sch:assert>
</sch:rule>

<sqf:add position="before">
 <xsl:comment select="ai:transform-content(
 'Act as an XSLT developer. Describe the following XSLT code.',
 fn:serialize(.))"/>
</sqf:add>

AI in Schematron and SQFAI in Schematron and SQF

Create XSD using AI
● A complex type that defines a tournament

<xsd:complexType name="Tournament">
<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Location" type="xsd:string"/>
<xsd:element name="StartDate" type="xsd:date"/>
<xsd:element name="EndDate" type="xsd:date"/>
<xsd:element name="PrizeMoney" type="xsd:decimal"/>
<xsd:element name="Winner" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

AI

AI in Schematron and SQFAI in Schematron and SQF

Generate XSD documentation
● An assert that verifies if documentation is present

● A fix that generates the documentation for the XSD element

<sch:rule context="xsd:element | xsd:complexType">
 <sch:assert test="preceding-sibling::node()[not(self::text())][1][self::comment()]">
 The <sch:name/> does not have a documentation</sch:assert>
</sch:rule>

<sqf:add position="before">
 <xsl:comment select="ai:transform-content(
 'Act as an XSD developer. Describe the following XSD code.',
 fn:serialize(.))"/>
</sqf:add>

AI in Schematron and SQFAI in Schematron and SQF

Create JSON Schema using AI
● A type that defines a purchase order

{
 "type": "object",
 "properties": {
 "orderNumber": {"type": "integer"},
 "customerName": {"type": "string"},
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "productId": {"type": "integer"},
 "quantity": {"type": "integer"},
 "price": {"type": "number"}
 }
 }
...

AI

AI in Schematron and SQFAI in Schematron and SQF

Conclusion
● Schematron can use the power of AI to verify content
● Correct content using SQF and AI
● Generate fixes automatically using AI
● Develop Schematron, XSLT, XSD, or JSON Schema with AI
● AI constantly improving and growing

AI in Schematron and SQFAI in Schematron and SQF

Future Plans
● Add support in Web Author
● Implement new extension functions
● Add cache for GPT requests
● Improve AI support for development

AI in Schematron and SQFAI in Schematron and SQF

Question: What features are the most important for you?
 Add support in Web Author
 Implement new extension functions
 Add cache for GPT requests
 Improve AI support for development
 Other (feedback is welcome)

AI in Schematron and SQFAI in Schematron and SQF

Resources
● https://openai.com/
● https://platform.openai.com/docs/guides/chat
● http://schematron.com/
● http://schematron-quickfix.github.io/sqf

https://openai.com/
https://platform.openai.com/docs/guides/chat
http://schematron.com/
http://schematron-quickfix.github.io/sqf

Questions?

Octavian Nadolu
Project Manager at Syncro Soft

octavian.nadolu@oxygenxml.com
Twitter: @OctavianNadolu

LinkedIn: octaviannadolu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

