
AI for XML Development
Advantages and Challenges

© 2024 Syncro Soft SRL. All rights reserved

Octavian Nadolu, Syncro Soft
octavian_nadolu@oxygenxml.com
@OctavianNadolu

mailto:octavian_nadolu@oxygenxml.com

Custom DITA Rules

Project Manager at Syncro Soft

octavian.nadolu@oxygenxml.com
• Over 20 years of experience in XML technology
• Contributed to various XML-related open source projects
• Speaker at multiple conferences
• Co-Editor of Schematron QuickFix specification developed by a

W3C community group

About me

AI for XML DevelopmentAI for XML Development

Agenda
● Artificial Intelligence (AI)
● How AI Understands XML
● Using AI to Generate XML Content
● Using AI to Add XML Markup
● AI in Developing XSLT, XSD, and Schematron
● Transform XML using AI and XPath Functions
● Advantages and Challenges

AI for XML DevelopmentAI for XML Development

What is Artificial Intelligence?
Artificial Intelligence (AI) is a branch of computer
science dealing with the simulation of intelligent
behavior in computers.

AI for XML DevelopmentAI for XML Development

Artificial Intelligence History
● AI history dates back to ancient times
● In 1950s AI began to take shape - researchers

began to use computers to try and simulate human
intelligence

● AI program by mathematician Alan Turing
● Expert system by Edward Feigenbaum in the 1970s

and the emergence of neural networks in the 1980s
● Today, AI is used to automate processes, improve

efficiency, and solve complex problems

AI for XML DevelopmentAI for XML Development

AI in Natural Language Processing
● Natural language processing (NLP) is

a subfield of AI that focuses on
enabling machines to understand and
generate human language

● Machine learning (ML) involves
training algorithms to learn patterns
in data

● Deep learning (DL) is a type of
machine learning that uses neural
networks

AI

ML

DL
NLP

AI for XML DevelopmentAI for XML Development

Transformers
● A transformer is a deep learning model (neural network)
● Transforms input sequences into output sequences
● The transformer architecture is based on the idea of self-attention
● Introduced in a research paper titled "Attention Is All You Need" in 2017

AI for XML DevelopmentAI for XML Development

Large Language Models
● Uses transformer architecture
● Trained on a large corpus of data

Examples:
– ChatGPT (GPT-4 model) - developed by OpenAI
– Bard - developed by Google
– Bing - developed by Microsoft
– Llama Chat - developed by Meta
– Claude, Mistral, Hugging Face, Amazon Bedrock

AI for XML DevelopmentAI for XML Development

AI Application for Text Processing
Trained language models that are very good at understanding and generating text

● Text Summarization
● Natural Language Processing
● Text Generation
● Machine Translation
● Text Classification

AI for XML DevelopmentAI for XML Development

AI and XML
• XML in a format that is both

human-readable and machine-
readable

• AI can understands XML markup
• AI can generate XML markup
• AI can add XML markup to the

content

AI for XML DevelopmentAI for XML Development

Using AI to Generate XML Content
• Use AI to generate XML markup
• Create an XML document from a description
• Create XML content based on a schema
• Generate Dita, DocBook, TEI documents

AI for XML DevelopmentAI for XML Development

Generate XML Content using AI
● Example of prompt that creates a Topic

Generate a new DITA XML topic based on following description:
Technical documentation for a car

<topic id="topic_car_technical_documentation">
 <title>Technical Documentation for Car</title>
 <body>
 <section>
 <title>Introduction</title>
 <p>This document provides comprehensive technical information about the car,
 including its specifications, features, and maintenance guidelines.</p>
 </section>
 ...
 </body>
</topic>

AI for XML DevelopmentAI for XML Development

Generate XML Content using AI
● Example of prompt creates a table

Act as an XML developer, Respond with no additional information,
Create a table from the following content:

- Go to Definition - Shows the definition for...
- Open Schema - Opens the selected schema..
- Edit Attributes - Allows you to edit the ...

<table>
 <tr><th>Feature</th><th>Description</th></tr>
 <tr><td>Go to Definition</td><td>Shows the definition for...</td></tr>
 <tr><td>Open Schema</td><td>Opens the selected schema...</td></tr>
 <tr><td>Edit Attributes</td><td>Allows you to edit the...</td></tr>
</table>

AI for XML DevelopmentAI for XML Development

Using AI to Add XML Markup
• You can use AI to add markup to your content
• XML markup can be added depending on the

context
• Correct documents to respect a specific

schema

AI for XML DevelopmentAI for XML Development

Add XML Markup using AI
● Example of prompt that generates an unordered list from a set of phrases

Act as an XML developer. Respond with no additional information,
Create a list from the phrases from the paragraph

<p> - Is active/passive voice used in the description?
- Is this written according to the styleguide?
- Does the to pic answers to this "question"?
- Is spelling and grammar correct? </p>

<p>
 Is active/passive voice used in the description?
 Is this written according to the styleguide?
 Does the to pic answers to this "question"?
 Is spelling and grammar correct?
</p>

AI for XML DevelopmentAI for XML Development

Add XML Markup using AI
Act as an XML developer. Respond with no additional information,

Add the missing cells from the table.

AI for XML DevelopmentAI for XML Development

AI and XML
• You can generate XML content using AI
• The prompt is very important
• Different AI models can give different results
• The result is not always the same for the same prompt

AI for XML DevelopmentAI for XML Development

Prompt for AI
• A prompt represents instructions and context given to a language model to

perform a task
“Act as an XML developer. Respond with no additional information. Create a table from
the following content: ”

• Techniques for creating a prompt:

• Adapted persona: “Act as an XML developer”
• Clearly defining the goal or objective: “Create a table from the following content”
• Refine the result: “Respond with no additional information.”
• Provide specific context (schema): “Create a DITA table …”, “Create a table that

respects the following schema”
• Provide additional information on request:

• “Function that returns the schema of the document”→ schema
• “Function that returns the location in the document” → XPath location

AI for XML DevelopmentAI for XML Development

AI in Developing
XSLT, XSD, and Schematron
• AI can be used for developing
• You can use it for example to:

• Document code
• Explain code
• Generate code
• Find problems
• Refactor code
• Start a conversation for a given code

AI for XML DevelopmentAI for XML Development

AI and XSL
• Generate the documentation for XSLT

<xsl:template match="timeResolution" mode="header">
 <xsl:call-template name="listHeader">
 <xsl:with-param name="name" select="'Time Resolution'"/>
 </xsl:call-template>
</xsl:template>

Document Code
Create documentation for the code
and include it as a comment in the
document.

<!-- This XSLT code template matches "timeResolution" in header mode and
calls the "listHeader" template with the parameter "Time Resolution". -->

AI for XML DevelopmentAI for XML Development

AI and Schematron
• Explain the Schematron code

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:pattern id="NumberOfcharactersInAnAbbreviation">
 <sch:rule context="BBB">
 <sch:report test="string-length(@bbb) < 2">There is not enough letters in the
 abbreviation</sch:report>
 <sch:report test="string-length(@bbb) > 3">There is too much letters in the abbreviation
 </sch:report>
 </sch:rule>
 </sch:pattern>
</sch:schema>

In this code snippet, a rule is defined within a pattern to validate the length of an abbreviation denoted by the attribute `@bbb` within
an element `BBB`. Here's a breakdown of the code:
- The schema is defined with the namespace `http://purl.oclc.org/dsdl/schematron`.
- A pattern with the id `NumberOfcharactersInAnAbbreviation` is defined.
- Within this pattern, a rule is specified with the context set to `BBB`, which means this rule will be applied to elements named `BBB`.
- Two reports are defined within the rule:
 - The first report checks if the string length of the attribute `@bbb` is less than 2 and provides a corresponding error message.
 - The second report checks if the string length of the attribute `@bbb` is greater than 3 and provides a corresponding error message.

Explain Code
Explain the code in the chat window

AI for XML DevelopmentAI for XML Development

Create Schematron using AI

<sch:assert test="count(tokenize(., '\s+')) = 10">
 There should be exactly 10.</sch:assert>

<sch:assert test="matches(., '\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')">
 There is no email in the text</sch:assert>

Generate code
An assert that verifies if there is an email in text

Generate code
An assert that verifies the number of words to be 10

AI for XML DevelopmentAI for XML Development

AI and XSD
• Generate XSD code

<xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="CustomerName" type="xs:string"/>
 <xs:element name="OrderDate" type="xs:date"/>
 <xs:element name="Items" type="ItemsType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ItemsType">
 <xs:sequence>
 <xs:element name="Item" type="ItemType" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ItemType">
 <xs:sequence>
 <xs:element name="ProductName" type="xs:string"/>
 <xs:element name="Quantity" type="xs:integer"/>
 <xs:element name="Price" type="xs:decimal"/>
 </xs:sequence>
</xs:complexType>

Generate code
A complex type that defines a purchase order

AI for XML DevelopmentAI for XML Development

Powerful AI for Development
● Provide document context for the actions
● Provide associated schema or XML
● Provide referred components
● Reuse code when generating new content

AI for XML DevelopmentAI for XML Development

Automate AI Actions
● Use the AI engine API to perform complex

actions
● Automate the process

AI for XML DevelopmentAI for XML Development

Implementation of AI API
● Using XSLT functions

● Using extension functions
– xs:boolean ai:verify-content(xs:string instruction, xs:string content)
– xs:string ai:transform-content(xs:string instruction, xs:string content)

<xsl:function name="ai:chatGPT">
 <xsl:param name="instruction"/>
 <xsl:param name="content"/>
 <xsl:variable name="url" select="'https://api.chatgpt.com/v1/chatbot/question'"/>
 <xsl:variable name="requestBody" select="concat('{', '"text":"',$instruction,
$content,'"', '}')"/>
 <xsl:variable name="response" select="document(concat($url, '?apiKey=',
'<your_api_key>'))//response"/>
 <xsl:sequence select="$response"/>
…..
</xsl:function>

AI for XML DevelopmentAI for XML Development

Functions Built-in Prompt
● A prompt represents instructions and context given to a language model to

perform a task
● Functions can provide a specific built-in prompt

– ai:verify-content(instruction, content)
“You are a technical writer and you need to verify the following and respond with
true or false:“ + Is active voice used in the description? + content

– ai:transform-content(instruction, content)
“You are a developer and you need perform the following task:“ + Rephrase
to use active voice + content

AI for XML DevelopmentAI for XML Development

AI Functions Usage
● Use the AI functions from XSL and XQuery

– Transform content using AI
– Create refactoring actions based on AI

● Use the AI functions from Schematron and SQF
– Verify document content automatically using AI
– Correct problems in document using AI

AI for XML DevelopmentAI for XML Development

Transform content using XSL and AI
• Generate the documentation for all templates and functions

<xsl:template match="xsl:template | xsl:function">
 <xsl:comment><xsl:value-of select="ai:transform-content(
 'As a developer, create a single phrase of documentation for the provided XSL content.' , .)"/>
 </xsl:comment>

 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
</xsl:template>

AI for XML DevelopmentAI for XML Development

Transform content using XSL and AI
<xsl:template match="/">
 <html>
 <head><title>Employees</title></head>
 <xsl:element name="table">
 <xsl:attribute name="border">1</xsl:attribute>
 <tr class="header">
 <xsl:attribute name="bgcolor">#336666</xsl:attribute>
 <xsl:attribute name="align">center</xsl:attribute>
 <td>

 Name

 </td>
…

<xsl:template match="//p:person">
 <xsl:element name="tr">
 <xsl:attribute name="align">center</xsl:attribute>
 <xsl:element name="td">
 <xsl:attribute name="width">120</xsl:attribute>

 <i>
 <xsl:value-of select="p:name/p:family/text()"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="p:name/p:given/text()"/>
 </i>

 </xsl:element>
...

<!--This template styles and displays an "Employees" table with
columns for "Name", "Email", and "Link".-->
<xsl:template match="/">
…

 <!--This XSLT template transforms `p:person` elements into
centered HTML table rows (`tr`) with columns (`td`) for the
person's full name, email, and link attributes for subordinates
and manager, formatted with Verdana font.-->
<xsl:template match="//p:person">
...

AI for XML DevelopmentAI for XML Development

Transform content using XSL and AI
• ai:transform-content(instruction, (user, agent,)* content)

<!-- Step 1: rephrase in 3 possible ways -->
<sch:let name="user-3variants" value="'Provide 3 variants of rephrasing the given text in strictly less than 75 words.'"/>
<sch:let name="assistant-3Variants" value="ai:transform-content($user-3variants, $currentShortDesc)"/>

<!-- Step 2: get the advantages and disadvantages of each variant -->
<sch:let name="user-compare3varinats" value="'For each of the given text variants, enumerate 3 strong points and 3 weak points
about how it is written.'"/>
<sch:let name="assistant-AdvAndDisadv" value="ai:transform-content($user-compare3varinats, $assistant-3Variants)"/>

<!-- Step 3: ask the AI to choose the best variant -->
<sch:let name="system-bestVariant"
 value="'Based on the strong points and weak point of the way each text is written, choose the one of them that best summarizes
 the following text and is the best written. Respond with just the best text, nothing else.'"/>
<sch:let name="assistantBestVariant" value="ai:transform-content($system-bestVariant,
 $user-3variants, $assistant-3Variants, $user-compare3varinats, $assistant-AdvAndDisadv,
 $currentShortDesc)"/>

AI for XML DevelopmentAI for XML Development

AI in XSL and XQuery
● Advantages of using AI with XSL and XQuery

– Perform refactoring actions
– Use AI to generate the content
– Control the content that is sent
– Control the content that is modified
– Automate the process

● Challenges
– Cost for transformation
– The response from the AI server in not instant
– Responses can sometimes be inaccurate

AI for XML DevelopmentAI for XML Development

Verify content using Schematron
● Example of a rule that checks if the text uses active voice

In the description we should use active voice

AI for XML DevelopmentAI for XML Development

Check the text voice
● Rule that verifies if the text voice is active

<sch:rule context="shortdesc">
 <sch:assert test="ai:verify-content('Is active voice used?', .)">
 In the description we should use active voice.</sch:assert>
</sch:rule>

AI for XML DevelopmentAI for XML Development

Correct the text voice
● Example fix that reformulates the text to use active voice

Reformulate the text to use active voice

AI for XML DevelopmentAI for XML Development

Correct the text voice
● SQF fix that that reformulates the text to use active voice

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Reformulate the text to use active voice</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content('

Reformulate to use active voice', .)"/>
</sqf:fix>

AI for XML DevelopmentAI for XML Development

Check if text should be a list
● Example of a rule that checks it the text should be converted to a list

The text should be converted to a list.

 <body>
 <p> - Is active/passive voice used in the description?
 - Is this written according to the styleguide?
 - Does the to pic answers to this "question"?
 - Is spelling and grammar correct?</p>
 </body>

AI for XML DevelopmentAI for XML Development

Create a list from phrases
● Example of fix that generates an unordered list from a set of phrases

Create a list from the phrases from the paragraph

 <p> - Is active/passive voice used in the description?
 - Is this written according to the styleguide?
 - Does the to pic answers to this "question"?
 - Is spelling and grammar correct?</p>

 Active/passive voice used?
 Written according to styleguide?
 Topic answers question?
 Spelling and grammar correct?

AI for XML DevelopmentAI for XML Development

Create a list from phrases
● SQF fix that creates a list from a set of phrases

<sqf:fix id="replace">
 <sqf:description>
 <sqf:title>Create a list from the phrases from the paragraph</sqf:title>
 </sqf:description>
 <sqf:replace match="text()">
 <xsl:value-of select="ai:transform-content(
 'Create a Dita unorderd list with an item from each phrase', .)"
 disable-output-escaping="yes"/>
 </sqf:replace>
</sqf:fix>

AI for XML DevelopmentAI for XML Development

AI and Schematron+SQF
● Advantages of using AI with Schematron and SQF

– Verify and correct your documents using AI
– Define the instructions to be sent to the AI engine
– Control the content that is sent
– Control the content that is modified
– Automate the content verification and correction

● Challenges
– High cost for validation as you type or multiple validations
– The response from the AI server in not instant
– Responses can sometimes be inaccurate

AI for XML DevelopmentAI for XML Development

Conclusion
● AI constantly growing and improving
● Use AI to generate and mark XML content
● Use AI for Development (in XSL, XSD, Schematron)
● Use XPath functions to automate the process
● Do not expect to do your job, use AI to improve your job

AI for XML DevelopmentAI for XML Development

Resources
● https://github.com/f/awesome-chatgpt-prompts
● https://platform.openai.com/docs/guides/chat
● Integrated Extension Functions
● http://schematron.com/
● http://schematron-quickfix.github.io/sqf

https://github.com/f/awesome-chatgpt-prompts
https://platform.openai.com/docs/guides/chat
https://www.saxonica.com/documentation9.5/extensibility/integratedfunctions/index.html
http://schematron.com/
http://schematron-quickfix.github.io/sqf

Questions?

Octavian Nadolu
Project Manager at Syncro Soft

octavian.nadolu@oxygenxml.com
Twitter: @OctavianNadolu

LinkedIn: octaviannadolu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

