
AI-powered Development
Enhancing Development Workflows

with AI Positron

© 2025 Syncro Soft SRL. All rights reserved

Octavian Nadolu, Syncro Soft
octavian_nadolu@oxygenxml.com
@OctavianNadolu

mailto:octavian_nadolu@oxygenxml.com

 Development Workflows with AI Development Workflows with AI

Agenda
● AI for Development (XSLT, XQuery,

Schematron, XSD, and JSON Schema)
● Create Your Own Custom AI Actions
● Oxygen XPath AI Functions
● AI in Schematron
● AI in XSLT/XQuery and Refactoring
● Advantages and Challenges

 Development Workflows with AI Development Workflows with AI

Oxygen AI Positron
Provides an advanced solution that utilizes artificial intelligence support for editing
and developing documents in Oxygen Editor/Developer/Author.

● Content Suggestion and Auto-completion
● Intelligent Contextual Assistance
● Error Detection and Correction
● Documentation and Code Insights
● Personalization and Adaptability

https://www.oxygenxml.com/ai_positron_assistant.html

http://oxygenxml.com/ai_positron_assistant.html

 Development Workflows with AI Development Workflows with AI

AI for Development

• AI can be used for developing XSLT, XQuery,
Schematron, XSD, and JSON Schema

• Built-in actions
• Explain code
• Chat about code
• Document code
• Annotate code
• Generate code
• Suggest refactoring

 Development Workflows with AI Development Workflows with AI

Explain Code
• Generates an explanation of the code
• Available for XSLT, Schematron, XSD, CSS, XQuery, and JSON Schema
• Useful when you want to understand a code

 Development Workflows with AI Development Workflows with AI

Explain Code in Schematron
• Explain the Schematron code

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:pattern id="NumberOfcharactersInAnAbbreviation">
 <sch:rule context="BBB">
 <sch:report test="string-length(@bbb) < 2">There is not enough letters in the
 abbreviation</sch:report>
 <sch:report test="string-length(@bbb) > 3">There is too much letters in the abbreviation
 </sch:report>
 </sch:rule>
 </sch:pattern>
</sch:schema>

In this code snippet, a rule is defined within a pattern to validate the length of an abbreviation denoted by the attribute `@bbb` within
an element `BBB`. Here's a breakdown of the code:
- The schema is defined with the namespace `http://purl.oclc.org/dsdl/schematron`.
- A pattern with the id `NumberOfcharactersInAnAbbreviation` is defined.
- Within this pattern, a rule is specified with the context set to `BBB`, which means this rule will be applied to elements named `BBB`.
- Two reports are defined within the rule:
 - The first report checks if the string length of the attribute `@bbb` is less than 2 and provides a corresponding error message.
 - The second report checks if the string length of the attribute `@bbb` is greater than 3 and provides a corresponding error message.

Explain Code
Explain the code in the chat window

 Development Workflows with AI Development Workflows with AI

Document Code
• Generates the documentation for the code and includes it as a comment in

the document
• Available for XSLT, XSD, and Schematron
• Useful when you want document different parts from your code

 Development Workflows with AI Development Workflows with AI

Document Code for XSL
• Generate the documentation for XSLT

<xsl:template match="timeResolution" mode="header">
 <xsl:call-template name="listHeader">
 <xsl:with-param name="name" select="'Time Resolution'"/>
 </xsl:call-template>
</xsl:template>

Document Code
Create documentation for the code
and include it as a comment in the
document.

<!-- This XSLT code template matches "timeResolution" in header mode and
calls the "listHeader" template with the parameter "Time Resolution". -->

 Development Workflows with AI Development Workflows with AI

Annotate Code
• Generates the documentation in the entire code
• Available for XSLT, XSD, and Schematron
• Useful when you want to document all your code pieces automatically

 Development Workflows with AI Development Workflows with AI

Annotate Code for Schematron
• Adds comments to the content

<sch:rule context="t:Type[text() = 'Doubles']">
 <sch:assert test="../t:Participants/@nbrParticipants mod 2 = 0">
 If you're playing doubles the number of participants must be divisible by 2.</sch:assert>
 <sch:assert test="../t:Participants/@nbrParticipants =
 ../t:Teams/@nbrTeams * 2">If you're playing doubles the number
 of participants must equal the number of teams x 2.</sch:assert>
</sch:rule>

Annotate Code
Adds comments to the content to
explain its functionality

<!-- Rule for double matches -->
<sch:rule context="t:Type[text() = 'Doubles']">
 <!-- Assert that the number of participants must be divisible by 2 for double matches -->
 <sch:assert test="../t:Participants/@nbrParticipants mod 2 = 0">
 If you're playing doubles the number of participants must be divisible by 2.</sch:assert>
 <!-- Assert that the number of participants must equal twice the number of teams for double matches -->
 <sch:assert test="../t:Participants/@nbrParticipants =
 ../t:Teams/@nbrTeams * 2">If you're playing doubles the number
 of participants must equal the number of teams x 2.</sch:assert>
</sch:rule>

 Development Workflows with AI Development Workflows with AI

Chat About Code
• Creates a new chat to start a discussion with the AI regarding the code
• Available for XSLT, Schematron, XSD, CSS, XQuery, and JSON Schema
• Useful when you want to to improve the code, modify the generated content,

or ask questions about the code

 Development Workflows with AI Development Workflows with AI

Chat About Code in XSD

<xs:sequence>
 <xs:element ref="p:name"/>
 <xs:element ref="p:email" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="p:link" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="p:url" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

Chat About Code
Add a new element note,
that contains less than 50 characters

Chat About Code
Start a discussion about code in the chat window

<xs:sequence>
 <xs:element ref="p:name"/>
 <xs:element ref="p:email" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="p:link" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="p:url" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="note">
 <xs:simpleType>
 <xs:restriction base="xs:string"> <xs:maxLength value="50"/> </xs:restriction>
 </xs:simpleType>
 </xs:element>
</xs:sequence>

 Development Workflows with AI Development Workflows with AI

Generate Code
• Generates the code for the current editor based on the given instructions
• Available for XSLT, Schematron, XSD, CSS, XQuery, and JSON Schema
• Useful when you want to generate new XSLT templates, new Schematron rule,

or new elements in an XSD.

 Development Workflows with AI Development Workflows with AI

Create Schematron using AI

<sch:assert test="count(tokenize(., '\s+')) = 10">
 There should be exactly 10.</sch:assert>

<sch:assert test="matches(., '\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')">
 There is no email in the text</sch:assert>

Generate code
An assert that verifies if there is an email in text

Generate code
An assert that verifies the number of words to be 10

 Development Workflows with AI Development Workflows with AI

Generate Code for XSD
• Generate XSD code

<xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="CustomerName" type="xs:string"/>
 <xs:element name="OrderDate" type="xs:date"/>
 <xs:element name="Items" type="ItemsType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ItemsType">
 <xs:sequence>
 <xs:element name="Item" type="ItemType" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ItemType">
 <xs:sequence>
 <xs:element name="ProductName" type="xs:string"/>
 <xs:element name="Quantity" type="xs:integer"/>
 <xs:element name="Price" type="xs:decimal"/>
 </xs:sequence>
</xs:complexType>

Generate code
A complex type that defines a purchase order

 Development Workflows with AI Development Workflows with AI

Generate Code for JSON Schenma
• Generate JSON Schema code

"phone": {
 "title": "Phone",
 "type": "object",
 "properties": {
 "countryCode": {
 "type": "string",
 "pattern": "^\\+?[1-9]\\d{1,3}$",
 "description": "The international dialing code, e.g., +1 for USA."
 },
 "areaCode": {
 "type": "string",
 "pattern": "^\\d{1,5}$",
 "description": "The area code within the country."
 },
 "number": {
 "type": "string",
 "pattern": "^\\d{4,10}$",
 "description": "The local phone number."
 }
 },
 "required": [
 "countryCode",
 "areaCode",
 "number"
],
 "additionalProperties": false
}

Generate code
A type that defines a phone

 Development Workflows with AI Development Workflows with AI

Suggest Refactoring
• Generates a suggestion for refactoring the selected code to simplify it and

make it easier to read and understand.
• Available for XSLT and XSD
• Useful when you ant to improve your code, to make it modular, and to use

new techniques

 Development Workflows with AI Development Workflows with AI

Start a new Chat
• Retrieval-Augmented Generation (RAG)
• Enable writing content in project
• Project read/write sandbox

 Development Workflows with AI Development Workflows with AI

Creating Custom Actions
● Framework that helps you to create custom action

● Validation based on JSON Schema
● Visual editing
● Place holders

● Add folder that contains custom actions

www.oxygenxml.com/doc/ug-addons/topics/ai_positron.html

https://www.oxygenxml.com/doc/ug-addons/topics/ai_positron.html#ai_positron__section_rly_wp4_wxb

 Development Workflows with AI Development Workflows with AI

Create New XSLT AI Action
● Action that creates a new XSLT file based on a specified content

 Development Workflows with AI Development Workflows with AI

Automate AI Actions
● Use the AI engine API to perform complex

actions
● Automate the process

 Development Workflows with AI Development Workflows with AI

AI XPath Functions
● Functions can provide a specific built-in prompt

– ai:verify-content(instruction, content)
“You are a technical writer and you need to verify the following and respond with
true or false:“ + Is active voice used in the description? + content

– ai:transform-content(instruction, content)
“You are a technical writer and you need perform the following task:“ + Rephrase to
use active voice + content

– ai:invoke-action(actionID, instruction*, content)
“You need perform the following task:“ + generate.indexterms (action prompt) +
Do not add other explanations + content

 Development Workflows with AI Development Workflows with AI

AI Functions Usage
● Use the AI functions from XSL and XQuery

– Transform content using AI
– Create refactoring actions based on AI

● Use the AI functions from Schematron and SQF
– Verify document content automatically using AI
– Correct problems in document using AI

 Development Workflows with AI Development Workflows with AI

Transform content using XSL and AI
• Generate the documentation for all templates and functions

<xsl:template match="xsl:template | xsl:function">
 <xsl:comment><xsl:value-of select="ai:transform-content(
 'As a developer, create a single phrase of documentation for the provided XSL content.' , .)"/>
 </xsl:comment>

 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
</xsl:template>

 Development Workflows with AI Development Workflows with AI

Transform content using XSL and AI
<xsl:template match="/">
 <html>
 <head><title>Employees</title></head>
 <xsl:element name="table">
 <xsl:attribute name="border">1</xsl:attribute>
 <tr class="header">
 <xsl:attribute name="bgcolor">#336666</xsl:attribute>
 <xsl:attribute name="align">center</xsl:attribute>
 <td>

 Name

 </td>
…

<xsl:template match="//p:person">
 <xsl:element name="tr">
 <xsl:attribute name="align">center</xsl:attribute>
 <xsl:element name="td">
 <xsl:attribute name="width">120</xsl:attribute>

 <i>
 <xsl:value-of select="p:name/p:family/text()"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="p:name/p:given/text()"/>
 </i>

 </xsl:element>
...

<!--This template styles and displays an "Employees" table with
columns for "Name", "Email", and "Link".-->
<xsl:template match="/">
 <html>
 <head><title>Employees</title></head>
 <xsl:element name="table">
 <xsl:attribute name="border">1</xsl:attribute>
 <tr class="header">
 <xsl:attribute name="bgcolor">#336666</xsl:attribute>
 …

 <!--This XSLT template transforms `p:person` elements into
centered HTML table rows (`tr`) with columns (`td`) for the
person's full name, email, and link attributes for subordinates
and manager, formatted with Verdana font.-->
<xsl:template match="//p:person">
 <xsl:element name="tr">
 <xsl:attribute name="align">center</xsl:attribute>
 <xsl:element name="td">
 <xsl:attribute name="width">120</xsl:attribute>

 <i>
 <xsl:value-of select="p:name/p:family/text()"/>
 <xsl:text> </xsl:text>
...

 Development Workflows with AI Development Workflows with AI

AI Complex Interactions
● Use AI XPath functions to create complex interactions

ai:transform-content(system, (user, assistant,)* user)
– system: “You are a marketing specialist. Create 3 variants of marketing post”|
– user: “Oxygen AI Positron service uses the OpenAI platform to help technical

documentation writers with features like document generation ...”
– assistant: AI response – 3 variants of post
– user: “For each variant, enumerate 3 strong points and 3 disadvantages”
– assistant: AI response – strong points and disadvantages
– user: “Based on the advantages and disadvantages, choose the best variant”
– Assistant: AI response – best marketing post

 Development Workflows with AI Development Workflows with AI

Transform content using XSL and AI
• ai:transform-content(instruction, (user, agent,)* content)

<!-- Step 1: rephrase in 3 possible ways -->
<sch:let name="user-3variants" value="'Provide 3 variants of rephrasing the given text in strictly less than 75 words.'"/>
<sch:let name="assistant-3Variants" value="ai:transform-content($user-3variants, $currentShortDesc)"/>

<!-- Step 2: get the advantages and disadvantages of each variant -->
<sch:let name="user-compare3varinats" value="'For each of the given text variants, enumerate 3 strong points and 3 weak points
about how it is written.'"/>
<sch:let name="assistant-AdvAndDisadv" value="ai:transform-content($user-compare3varinats, $assistant-3Variants)"/>

<!-- Step 3: ask the AI to choose the best variant -->
<sch:let name="system-bestVariant"
 value="'Based on the strong points and weak point of the way each text is written, choose the one of them that best summarizes
 the following text and is the best written. Respond with just the best text, nothing else.'"/>
<sch:let name="assistantBestVariant" value="ai:transform-content($system-bestVariant,
 $user-3variants, $assistant-3Variants, $user-compare3varinats, $assistant-AdvAndDisadv,
 $currentShortDesc)"/>

 Development Workflows with AI Development Workflows with AI

AI in XSL and XQuery
● Advantages of using AI with XSL and XQuery

– Perform refactoring actions
– Use AI to generate the content
– Control the content that is sent
– Control the content that is modified
– Automate the process

● Challenges
– Cost for transformation
– The response from the AI server in not instant
– Responses can sometimes be inaccurate

 Development Workflows with AI Development Workflows with AI

Verify content using Schematron
● Example of a rule that checks if the text uses active voice

In the description we should use active voice

 Development Workflows with AI Development Workflows with AI

Check the text voice
● Rule that verifies if the text voice is active

<sch:rule context="shortdesc">
 <sch:assert test="ai:verify-content('Is active voice used?', .)">
 In the description we should use active voice.</sch:assert>
</sch:rule>

 Development Workflows with AI Development Workflows with AI

Correct the text voice
● Example fix that reformulates the text to use active voice

Reformulate the text to use active voice

 Development Workflows with AI Development Workflows with AI

Correct the text voice
● SQF fix that that reformulates the text to use active voice

<sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Reformulate the text to use active voice</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content('

Reformulate to use active voice', .)"/>
</sqf:fix>

 Development Workflows with AI Development Workflows with AI

Use AI to Create Short Description
● Add a short descriptive element. Generate the text from the current document

content using AI

<sqf:add match="title" position="after">
 <shortdesc>
 <xsl:value-of select="
 ai:transform-content('You are a technical documentation writer.
 Generate a short description as text in less than 30 words for this content:',
 string-join(parent::*//text(), ''))"/>
 </shortdesc>
</sqf:add>

 Development Workflows with AI Development Workflows with AI

Use AI to Create Text from Image
● Add an alternate element. Generate the text by reading the image using AI

<sqf:add node-type="element" target="alt">
 <xsl:value-of select="
 ai:transform-content(
 'Create a short alternate text description for this image:',
 concat('${attach(', resolve-uri(@href, base-uri()), ')}'))"/>
</sqf:add>

 Development Workflows with AI Development Workflows with AI

Apply All Quick Fixes
 Efficiency: Manual correction is time-

consuming

 Batch Resolution: correct all validation
issues in a document

 Preview and Confirmation: Check the
modifications before they are applied

 Page Flexibility: Works in both Text and
Author modes

 Development Workflows with AI Development Workflows with AI

AI and Schematron+SQF
● Advantages of using AI with Schematron and SQF

– Verify and correct your documents using AI
– Define the instructions to be sent to the AI engine
– Control the content that is sent
– Control the content that is modified
– Automate the content verification and correction

● Challenges
– High cost for validation as you type or multiple validations
– The response from the AI server in not instant
– Responses can sometimes be inaccurate

 Development Workflows with AI Development Workflows with AI

Conclusion
● AI constantly growing and improving
● Use AI for developing your schemas or stylesheets
● Use AI XPath functions to automate the process
● Refactor your content using AI
● Do not expect to do your job, use AI to improve your job

 Development Workflows with AI Development Workflows with AI

Future Plans
 New development actions
 Improve the editing for custom actions
 Support for testing the prompts
 feedback is welcome

 Development Workflows with AI Development Workflows with AI

Question: What future developments would you like to see?

 New development actions
 Improve the editing for custom actions
 Support for testing the prompts
 Other (use the question panel)

 Development Workflows with AI Development Workflows with AI

Resources
● oxygenxml.com/doc/ug-addons/topics/ai_positron.html
● github.com/oxygenxml-incubator/ai-positron-assistant-samples
● https://platform.openai.com/docs/guides/chat
● http://schematron.com/
● http://schematron-quickfix.github.io/sqf

https://www.oxygenxml.com/doc/ug-addons/topics/ai_positron.html
https://github.com/oxygenxml-incubator/ai-positron-assistant-samples
https://platform.openai.com/docs/guides/chat
http://schematron.com/
http://schematron-quickfix.github.io/sqf

Questions?

Octavian Nadolu
Project Manager at Syncro Soft

octavian.nadolu@oxygenxml.com
Twitter: @OctavianNadolu

LinkedIn: octaviannadolu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

